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We use Green’s function molecular dynamics to evaluate the effectiveness of asperity models when describ-
ing the contact mechanics of elastic solids with self-affine surfaces. Surfaces are created with the help of a
Fourier filtering algorithm, and the interactions between the solids are modeled via hard-wall potentials. We
illustrate how the real area of contact Areal is formed by a set of contact clusters. Two different regimes are
identified when the normal force per cluster Lc is plotted as a function of its area Ac. Small clusters satisfy a
Hertzian-type law Lc�Ac

3/2, while large clusters display a linear Lc�Ac behavior. It is shown how the area A
c
*,

where the crossover between the two regimes takes place, depends only on the roughness at the smallest length
scale if the longitudinal dimension of the surface remains unaltered. Moreover, our results display a distribu-
tion of cluster sizes P�Ac� remaining nearly constant for areas smaller than A

c
*, while showing power law decay

above such a critical value. Furthermore, we found the heights of the contacting atoms to be normally distrib-
uted with width inversely proportional to the surface roughness.
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I. INTRODUCTION

Asperity models have ruled the field of analytical theories
developed to describe the contact mechanics of rough sur-
faces since the publication of the ground-breaking paper by
Greenwood and Williamson in the mid-1960s �1�. The need
for understanding and predicting the nature of the contact
between rough surfaces stems from its many potential appli-
cations in industry �2,3�. Over the last 40 years, due to their
success in describing rough contacts, asperity models have
become tools of common engineering practice to estimate
the values of many physical variables at the interface be-
tween contacting solids. The real area of contact, friction,
adhesion, electrical conductance, and wear are just a few
examples of the several variables scientists and engineers
have studied using such models �4–7�.

Analytical solution of the equations of linear elasticity for
the contact problem of rough surfaces is currently an impos-
sible task �8�. In order to predict the contact mechanics of
rough surfaces all asperity models have to rely on certain
approximations and assumptions. The one exception is the
case where the surfaces consist of leveled regular arrays of
parabolic bumps which can be solved exactly using the Hertz
contact theory �9�. Otherwise, in most cases, three main pos-
tulates have to be introduced, regardless of the specific char-
acteristics of the given model. As a first postulate, it is as-
sumed that all surfaces are formed by a set of asperities
�bumps�, which individually satisfy the Hertzian contact me-
chanics. That is, when contact occurs, the load Lc and the
area Ac per asperity are related such that Lc�Ac

3/2.
The asperity definition itself has proven very controver-

sial �10,11�. Within the theory of Greenwood and Williamson
�GW� �1�, an asperity is considered to be a spherical bump
with curvature radius R. Thus, the surface consists of an
array of identical bumps arranged in a way that their heights

are distributed according to a Gaussian law. A variation of
the GW model, developed by Bush, Gibson, and Thomas
�12�, has proposed each asperity to be a parabolic bump and
the surface a collection of those bumps with a height distri-
bution that can be described by a random process. Further
attempts within similar models to approach the shape of real
surfaces �13–15� have introduced a distribution of asperity
sizes. Yet individual asperities are considered by these latter
models as being described using quadratic functions and
such that individually they satisfy the Hertzian contact me-
chanics. While well aware of the limitations of the asperity
definition in tackling the resolution dependence of real sur-
faces, all the authors of asperity models seem to agree with
the validity of the Hertzian contact mechanics at the single-
asperity level.

The second assumption commonly used by these theories
is to consider nominally smooth geometries, which is a rea-
sonable conjecture at enough large scales. More specifically,
they suggest that the height distribution of real surfaces can
be approximated by a Gaussian law. Certainly, many experi-
mental works show a wide range of real surfaces displaying
the aforementioned characteristic �3,16�. Questioning the va-
lidity of this second assumption has been the aim of some
recent studies �17–19�, but the effect of non-Gaussianity in
the height profiles is generally found to be small. Moreover,
because there exist many computational techniques known to
us to generate surfaces with Gaussian distributed heights
�20�, this particular supposition makes the predictions of as-
perity models more amenable to comparison with those of
numerical simulations �21�.

The third postulate, which classifies more as a limitation
than an advantage of asperity models, relates to neglecting
the effects of long-range elastic interactions within the con-
tact region. That is, if a certain asperity gets pressed down at
a given time, the neighboring asperities will not experience
any elastic perturbation at their locations. It is important to
note that such behavior does not depend on the distance be-
tween asperities. Therefore, the elastic response of the neigh-*ccampana@nrcan.gc.ca
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boring bumps is uncorrelated with the action exerted on the
bump at the origin. The limitations associated with this pos-
tulate have been extensively discussed within prior works of
the current author �2,22� as well as by other groups �23,24�.

Using computer simulations, several experts have studied
the variations in the contact morphology as a result of con-
sidering long-range elastic interactions �23–27�. The main
advantage of the simulations, as opposed to theoretical ap-
proaches, is that they can numerically solve exactly the elas-
tic contact problem of rough surfaces. Robbins and col-
leagues �23,24,26� have found that correlations in the
positions of contacting asperities affect the size and the dis-
tribution of the contact regions. They have also analyzed the
effects of roughness at large and small wavelengths in the
nature of the contact between randomly rough surfaces �23�.
Batrouni et al. �25� and Borri-Brunetto et al. �27� have
looked into the dependence of the real area of contact Areal as
a function of the applied load. However, they focused more
on the effects of increasing the resolution in the roughness of
the surfaces rather than in the long-range elastic coupling at
the interface.

In a previous contribution �2�, the current author and col-
laborators showed how the lack of long-range correlations in
asperity models limits tremendously their prediction capa-
bilities when the shapes of the surfaces under study are no
longer randomly rough. Nevertheless, the assumptions of as-
perity models appear to work reasonably well for surfaces
with several decades in roughness whenever the applied load
is low enough and their topographies can be described using
a Gaussian height probability distribution.

In this paper we applied the Green’s function molecular
dynamics technique �28� to study the elastic contact problem
of rough surfaces with self-affine topographies. We show
how the area of contact is formed by a set of contact clusters
and we study their size and height distributions. Two differ-
ent scaling regimes are identified when the normal force per
cluster Lc is plotted as a function of its area Ac. The way that
variations in the roughness of the surfaces are reflected in the
shape of the area probability distribution P�Ac� of the clus-
ters is also discussed. We have also calculated what percent-
age of the total contact area is occupied by each one of the
two scaling regimes referred to above. Our results proved to
be robust when the resolution of the numerical grid em-
ployed to model the elastic solid was increased.

The remainder of the manuscript is structured as follows.
In Sec. II we review the technical aspects of our numerical
approach. Whenever required, reference is made to the origi-
nal contributions for a more exhaustive analysis of the meth-
odology. In Sec. III we present the simulation results and use
them to rationalize the success of asperity models for self-
affine surfaces. Conclusions are drawn in Sec. IV.

II. NUMERICAL METHODS

As in previous work �24,28–30�, we use a well-known
contact mechanics mapping model to simplify the problem
of bringing two elastic bodies with rough surfaces into con-
tact. In the absence of friction, adhesion, and sliding, the
problem of normal elastic contact between two self-affine

surfaces can be mapped into the problem of the contact be-
tween a rigid composite topography and an elastic plane �8�.
Two properties ensure the exactness of such a mapping

model. First, the power spectra h̃�q� of self-affine surfaces is
additive. Second, the effective elastic modulus E� of the
equivalent plane is uniquely determined from the elastic
moduli E1,2 of the two solids initially brought into contact.

The elastic solids considered in this study are modeled as
a single plane �sheet� of atoms, where the renormalized
forces between the atoms are computed with the help of a
Green’s function formalism �28,31�. The Green’s function
formalism allows for a coarse-grained representation of a full
harmonic solid, in which the bulk elastic interactions have
been integrated out. For a more complete analysis we sug-
gest a review of the original paper in which the technique
was introduced �28�.

The masses of the atoms forming the elastic sheet are
chosen to be identical, m=1. The lattice constant of the elas-
tic manifold is set to a=1 and the renormalized interactions
are defined such that both Lamé constants � and � are unity.
This is equivalent to making the sheet’s elastic modulus E
=5 /2, its bulk modulus K=5 /3, and its Poisson ratio �
=1 /4.

Self-affine topographies were produced using a Fourier

filtering technique for the heights h̃�q� �20�. With its help, we
generated surfaces with Gaussian distributed heights. Such a
distribution has expectation value and second moment satis-
fying

�h̃�q�� = 0, �1�

�h̃*�q�h̃�q�� = hs
2�qs/q�2H+2��qs − q���q − ql� , �2�

where hs is the amplitude of the roughness at the short wave-
length. ��·� is the Heaviside step function and qs and ql are
the corresponding cutoffs characterizing the short- and long-
wavelength roughness. In this study, the roughness vector
ql=2� /�l is defined such that �l=L, L being the longitudi-
nal dimension of the interface. Unless stated, in all simula-
tions the ratio �l /a=4096. Because the dimensions of the
interface remained fixed, only the vector qs was allowed to
change. The variable H is known as the roughness �or Hurst�
exponent. In this work, the values of H, hs, and qs are
changed within the definition of the second moment

�h̃*�q�h̃�q�� such that the root-mean-square gradient of the
surfaces remained constant, ��	�h�r�
2�=0.031. This permit-
ted us to work within the small-slope approximation when
comparing our numerical results to the predictions of asper-
ity models, as required by the theory of linear elasticity �32�.

To mimic the interactions between the elastic plane and
the rigid self-affine substrate, hard-wall potentials are em-
ployed. We use a hard-wall approach that acts as a boundary
condition, preventing the elastic plane from penetrating the
rigid rough surface at all times. As mentioned in previous
contributions �28,33�, this boundary condition can be en-
forced by setting the normal coordinate of any atom that
penetrates the surface, to the value of the surface height h�r�
corresponding to the same in-plane vector r. In addition, the
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direction of the normal component of the velocity of the
atom should be reversed. It is worth mentioning that this
artificial implementation of hard-core potentials does not af-
fect the results of the simulations, when compared to other
standard approaches, as long as one is not interested in dy-
namics.

Identifying the atoms in contact at the interface, as well as
labeling the different contact clusters, is done by means of
the Hoshen-Kopelman �HK� algorithm �34�. The HK algo-
rithm defines each contact cluster by considering all those
atoms that are “in contact” and can be connected through a
continuous path of nearest neighbors in a square lattice.
Other labeling techniques could be considered; however, the
current implementation facilitates the comparison of our re-
sults to those obtained by Pei et al. �26� and Hyun et al.
�23,24�, who used an identical labeling technique.

III. RESULTS

A. The definition of contact: Cluster morphology

Definition of which regions are in contact between two
solids involves a nontrivial analysis within experiments as
well as in numerical simulations. Past experimental works
�35� have used optical methods to visualize and determine
the contact area. The criterion employed by Dieterich et al.
�35� to differentiate between the conditions of “contact” and
“no contact” was to identify as in contact any region where
the surfaces were closer than some fraction of the wave-
length used by their optical system. However, as suggested
by Hyun et al. �24�, due to the fractal nature of the contact in
the Dieterich et al. experiments, such a criterion might have
resulted in an overestimation of the real area of contact.

If the interactions between the surfaces are modeled using
finite-range potentials, the definition of contact can be chal-
lenging also within computer simulations. Yang et al. �30�
have noticed that neither the criteria of a critical distance nor
a critical pressure are good enough to define contact when-
ever finite-range interactions are considered. For example,
for a parabolic asperity, the critical pressure or distance es-
tablishing where contact takes place depends on its radius of
curvature. Above, it is assumed that such critical magnitudes
are computed by fitting the Hertzian pressure profile to the
numerical data. Similar arguments apply to surfaces with
roughness on many length scales, in which one encounters a
large number of asperities conforming the topographies.

Alternatively, when the nature of the interactions between
the solids are modeled via hard-core potentials, the contact
area can be defined as those regions where the surfaces over-
lap. A procedure of this kind, based on geometrical consid-
erations, was chosen by Robbins and colleagues �23,24� in
their finite-element approach. However, we have employed a
different criterion to define contact within the context of this
work. In our model, an atom is expected to be in contact if
the pressure acting on such a particle exceeds some prede-
termined value. Thus, the results we report in this paper cor-
respond to those obtained once convergence is achieved after
the values of this pressure threshold are decreased continu-
ously.

If two elastic solids are brought into contact via Green’s
function molecular dynamics �GFMD�, once equilibrium is
achieved, the real area of contact appears to be formed by a
set of contact clusters of variable size as shown in Fig. 1.
Small clusters have geometries that resemble those of para-
bolic tips while larger clusters display more complex topog-
raphies. It is the competition between the roughness ratio
qs /ql and the discretization ratio qa /qs that determines the
nature of the contact clusters. Above it is assumed that qa
=2� /a. The roughness ratio describes how much larger is
the longest wavelength where roughness exists, as compared
to the short roughness wavelength within the fractal surface.
Conversely, the discretization ratio is a measure of how
many atoms are found per short roughness wavelength, or, in
other words, how many atoms on the elastic plane occupy
the area of a single parabolic tip on the self-affine surface.
We name the product of the roughness and discretization
ratio the resolution ratio qa /ql.

The effects of changing the discretization �resolution� in
rough contacts, have been discussed extensively in the recent
works of several authors �2,23,24,29,36�. To allow a proper
comparison between the results of GFMD simulations and
the predictions of asperity models for surfaces with multi-
scale roughness, two major requirements have to be satisfied.
First, the discretization of the elastic plane at the single-
asperity level has to be such that the pressure probability
distribution P�p� approaches zero as the pressure decreases,
i.e., P�p�→0, p→0. This condition ensures that the reso-
lution of the elastic sheet is such that there are sufficient
atoms per individual Hertzian tip to reproduce correctly its
analytical solution �8�. If the P�p� remains unchanged after
further increase in the discretization of the elastic sheet, we
call it a converged pressure distribution. Second, the number
of asperities that form the surface has to be large enough in
order for the results to be self-averaging. Statistically speak-
ing, the theoretical assumption of a nominally flat surface
can only be achieved in our numerical simulations when
qs /ql�64.

B. Distribution of normal forces

The distribution of normal forces over the full set of con-
tact clusters constitutes a subject of interest when the contact
mechanics of self-affine surfaces is studied. We mentioned in
the Introduction of this paper that the first assumption of
most asperity models is to approximate the area of contact

FIG. 1. �Color online� Visualization of a self-affine surface and
contact clusters �light colored regions�. The surface shown can be
characterized by a roughness exponent H=0.3, a relative roughness
ratio qs /ql=64, a discretization ratio qa /qs=64, and a rms gradient
of 0.031.
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with a group of disconnected asperities which individually
satisfy the Hertzian contact mechanics. To test this assump-
tion, in Fig. 2 we have plotted the normal load per contact
cluster Lc as a function of its area Ac. The discretization ratio
for this case was qa /qs=64. This value proved to be suffi-
cient to obtain numerically converged pressure histograms.
In the plot, both axes were normalized in such a way that the
results of simulations corresponding to different relative ar-
eas of contact, Areal /A0, are superimposed. Here A0 stands for
the total area of the surface. The normalization factor we
used, �qs /ql�2, is motivated by recent work of Hyun and Rob-
bins �23�. In their contribution, the authors reported the ex-
istence of two scaling regimes in the area probability distri-
bution P�Ac� of the contact clusters. The transition point
between the two regimes seemed to be only a function of the
short-scale roughness; hence our choice for the normaliza-
tion factor. Each data point included within Fig. 2 represents
an average over ten clusters of the original size distribution.
Lastly, to guarantee that we worked in the limit of small
loads, the values of the relative contact area Areal /A0 were
varied up to a maximum value of �14%.

Two different regions are identified within Fig. 2 in the
distribution of normal forces. For clusters of small sizes, a
Hertzian-type regime in which Lc�Ac

3/2 becomes clearly vis-
ible. In opposition, clusters of large area appeared to follow a
linear law Lc�Ac. As expected, we observed how the aver-
age distribution of small clusters can be modeled using the
Hertzian contact mechanics. This is due to the fact that at
small scales single asperities are fully resolved within our
simulations. However, the existence of a Hertzian and a lin-
ear regime within the interface emerges as a new feature that
has not been reported until recently by the current author and
collaborators �22�. The linear behavior at larger scales is the
result of roughness with many different wavelengths forming

the contact region, which makes the load scaling with area
similar to that of the macroscopic contact area.

Clearly, the presence of the linear clusters does not com-
promise the capabilities of asperity models when predicting
the linear relation between applied load and total contact area
at small loads. If the contribution of the asperities in the
Hertzian region accounts for the linear relationship between
the real area of contact and the applied load, certainly inclu-
sion of the contribution of the asperities in the linear region
will not change the outcome. However, the nature of the
contact results in a more complex topology in which not one,
but two, different scaling regimes coexist. We chose to name
the area A

c
* at which the crossover takes place the critical

area.
Understanding the dependency of the critical area with

respect to the variables characterizing the contact comprises
the purpose of the following paragraphs. From analytical
theories �1,12,37�, it is well known that the real contact area
Areal and the total applied load L are related through the
equation

Areal =
�

��	�h�r�
2�
L

E�
, �3�

where � is a dimensionless proportionality coefficient, E�
=E / �1−�2� is the effective elastic modulus, and E and � are
the Young’s modulus and the Poisson ratio, respectively. The
remaining term in the denominator corresponds to the sur-
face’s root-mean-square gradient as already mentioned in
Sec. II. Note that, if we fix the elastic properties of the solid
as well as the surface topography, Areal and L will be related
through a unique proportionality constant.

Combining the results shown in Fig. 2 with Eq. �3� allows
us to obtain approximate scaling laws for A

c
*. The x axis on

the graph shows the crossover occurring approximately at
the same value of A

c
* for all the different cases. This univer-

sal crossover condition reads

A
c
*

Areal
�qs

ql

2

� c , �4�

with c being a constant such that c�2. With the help of Eqs.
�3� and �4� the scaling law for the critical area adopts the
form

A
c
* �

�c
��	�h�r�
2�

L

E�
� ql

qs

2

. �5�

Equation �5� explicitly includes the possibility of a similar
superposition for different graphs, when the ratio �qs /ql�2

and not Areal becomes the magnitude experiencing changes.
Moreover, an almost identical value for the constant c should
be expected. Indeed, that is exactly what we observe when
the data from these calculations is plotted following the same
approach used to produce Fig. 2. The results of the new
simulations are included within Fig. 3. In this version of the
plot, we have kept the relative area of contact constant and
only varied the fraction �qs /ql�2 such that the rms gradient of
the surface remains unchanged. The roughness exponent, the
discretization ratio qa /qs, the elastic properties of the sheet,
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FIG. 2. �Color online� Load per contact cluster �Lc� as a func-
tion of its area �Ac� for different values of the real area of contact
Areal. The plot corresponds to a self-affine surface characterized by
a roughness exponent H=0.3, a relative roughness ratio qs /ql=64, a
discretization ratio qa /qs=64, a resolution ratio qa /ql=4096, and a
rms gradient of 0.031. The continuous line shows the linear region
Lc�Ac while the dashed line displays the Hertzian Lc�Ac

3/2 re-
gime. Both axes have been normalized such that different plots
collapsed onto one universal curve.
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and the random seed employed to generate the surface also
remained unaltered. Simulations corresponding to other val-
ues of the roughness exponent displayed identical features.

C. Area and height probability distributions

As mentioned within Sec. II, variations in the ratio qs /ql
in this work were achieved by changing only the short-scale
roughness qs while keeping fixed ql=2� /�l, where �l
=4096a. With this in mind and looking back to Figs. 2 and 3,
one can conclude that, if the longitudinal dimension L of the
interface is constant, the critical area of the contact clusters
depends only on the short-scale roughness. In their paper,
Hyun et al. �23� reached a similar conclusion by looking at
the probability of finding a contact cluster of a given area
P�Ac�. Although the authors did not analyze the distribution
of normal forces on the contact regions, they found two dif-
ferent scaling regimes for P�Ac�. The area where the transi-
tion from one regime to another took place proved to be a
function of only the small scale where roughness existed.

Our results concerning the computation of the area prob-
ability function for the contact clusters are stated in Fig. 4.
As in the paper by Hyun et al. �23�, we found two regions in
which P�Ac� obeyed different trends. In the first region, as-
sociated with the Hertzian regime, P�Ac� stayed almost con-
stant. In contrast, in the linear regime the probability func-
tion decayed following a power law. The results presented
correspond to the same surface employed to generate the
plots in Figs. 2 and 3. Additionally, we have included data
points corresponding to simulations performed with a value
of the roughness exponent H=0.8. This is due to the fact that
most of the real surfaces can be described by a Hurst expo-
nent close to 0.8.

Figure 4 shows how, after the value of H was increased,
the P�Ac� for small clusters hardly changed. Conversely, for
clusters of large area the exponent of the power law becomes

smaller in absolute units. Having a P�Ac� at small cluster
sizes independent of the roughness exponent is related to the
fact that each single asperity is fully resolved within the
simulations. The geometry of clusters with sizes of the order
of the short wavelength �s

2 cannot be a function of the Hurst
exponent characterizing the self-affine nature of the surface
topographies. In self-affine fractals, the rms gradient of the
surface scales as �−�1−H� �20�, with � being the distance that
characterizes lateral variations in the heights. For surfaces
with H	5 this results in anticorrelation between surface
slopes in neighboring regions. Alternatively, when H
5
positive correlation between local slopes arises �24�, leading
to a P�Ac� that depends on H at large areas. One should
expect from such differences that smaller Hurst exponents
would limit the formation of large clusters, as verified above
in our Fig. 4. Hyun and Robbins �23� arrived at a similar
conclusion when studying the effects of changing the large-
scale roughness ql in self-affine systems. However, we con-
sider it important to highlight that the resolution of our nu-
merical grid is significantly higher than any of those used in
the past for contact mechanics problems. Previous meshes
allowed for a total number of 512�512 grid points at the
interface �23–25�, while with our method we take the prior
value up to 4096�4096 system sizes. The possibility of
modeling such large sizes allowed us to resolve features in
these systems unable to be captured by any of the prior nu-
merical works.

We have also looked at the modifications that P�Ac� un-
dergoes with changes in the roughness ratio qs /ql. The out-
come of this second group of simulations is presented in Fig.
5. In the language of asperity models, increasing the rough-
ness ratio results in an increment in the number of asperities
that form the surface topography. Consequently, to maintain
the same rms gradient of the surface, one has to reduce the
amplitude of the fluctuations in the height profile. A larger
number of asperities implies that higher resolution should be
used in order to obtained converged pressure histograms. As
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FIG. 4. �Color online� Area probability distribution of the con-
tact clusters, P�Ac�, for a given roughness ratio �qs /ql=64�. A
nearly constant P�Ac� is seen for small clusters while a power law
scaling is identified for large cluster sizes. When the value of the
roughness exponent H is increased, the nearly constant probability
distribution remains unaltered, while the power law at large sizes
shifts its exponent to lower values in absolute units.
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we are limited to system sizes of 4096�4096, only the his-
tograms corresponding to a ratio qs /ql=64 showed full con-
vergence. That is the reason why within Fig. 5 the P�Ac�’s at
small cluster sizes appear to be nearly constant only for the
qs /ql=64 case.

Variations in the roughness ratio did not affect signifi-
cantly the exponent of the P�Ac� power law in the region of
large clusters. The trend was also observed by Hyun et al.
�23,24� though the exponent of the power law they reported
deviates from the value we obtain for a similar case. We
believe the reason for this discrepancy lies in a fundamental
difference between our models. The model of Hyun et al.
considered the flat substrate to be rigid while the finite-
element mesh was assigned to the rough elastic solid. In
contrast, we located the mesh on the elastic plane while the
rough surface was assumed to be rigid. For discrete models,
there is no requirement within the elasticity theory that sug-
gests the two approaches are equivalent. As a matter of fact,
if one imagines the contact mechanics of a parabolic tip, the
morphology of the contact will turn out to be quite different
in the two cases. Hyun’s et al. framework would show a tip
that flattens at the top when contact takes place with the rigid
plane. Our model would visualize the elastic plane deform-
ing while getting closer to the base of the tip as contact
occurs.

How are the heights of the contacting regions distributed
at the interface? The preceding sentence is another question
we intended to answer in this study. The reply to this ques-
tion relates directly to a test of the second assumption of
asperity models. For this purpose, we have computed the
height histograms of the contacting regions P�h�, in which
the height of every atom that is in contact is accounted for.
The distributions linked to two different values of the rough-
ness ratio and Hurst exponent are presented in Fig. 6. Given
a fixed rms gradient value, the width of the distribution
shows inverse proportionality with qs /ql. Furthermore, the
center of the distribution shifts to higher values of h when
qs /ql is decreased. This fact relates to the need to increase

the fluctuations in the heights in order to maintain the same
rms gradient once the fraction qs /ql has been reduced.

The main result revealed in Fig. 6 is the excellent descrip-
tion that a Gaussian function provides when fitting the
P�h�’s. A Gaussian distribution for the heights in the contact
regions corresponds flawlessly to the second assumption of
asperity models. Yet we should remind the reader that the
surface geometries considered in this work are always self-
affine fractals. Thus, the heights of the contacting regions
being Gaussian distributed should not come as a great sur-
prise, if it is known a priori that the distribution of the
heights for the full surface follows the same trend.

D. Hertzian contact versus total contact

The majority of engineering surfaces involve more than
six decades in length scales. It is with the purpose of predict-
ing their contact mechanics that asperity models have been
developed. Lately �36�, Persson has expressed concern about
the applicability of the existing numerical methods to tackle
the contact mechanics of such rough surfaces. While numeri-
cal techniques are still unable to address questions concern-
ing surfaces with six orders of magnitude difference in
roughness, approaches like our GFMD offer the possibility
of studying with great accuracy the contact between surfaces
with three decades in length scales. Thus, they represent suit-
able tools to shed light on the contact mechanics of systems
of interest to engineers for microtechnological applications.

In the prior sections, we have focused our attention on
unraveling the scaling laws obeyed by the normal forces on
the contact clusters. We have also computed their area and
height probability distributions, although no information has
been provided to address how many of the atoms in contact
belong to each scaling regime. Surely, an appealing issue
relates to what percentage of the contact region is being oc-
cupied by the Hertzian clusters and what by the linear clus-
ters.
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FIG. 5. �Color online� Area probability distribution of the con-
tact clusters for a given roughness exponent �H=0.3�. When the
roughness fraction is reduced �the value qs /ql is decreased�, the
nearly constant probability distribution becomes clearly visible for
clusters with sizes of the order of �or smaller than� of the small
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To characterize the contact morphology one needs to an-
swer the question of how changes in the discretization ratio
affect the nature of the contact. The path we have chosen to
answer such a question is described as follows. Self-affine
surfaces were created with roughness exponent and rms gra-
dient identical to those of the ones employed to generate Fig.
2. Different random seeds were used. The effects of changing
the discretization ratio are modeled using two alternative ap-
proaches. In the first one, changes in the discretization ratio
qa /qs were achieved by varying the resolution fraction qa /ql
such that qs /ql remained constant. This is equivalent to al-
lowing the lattice constant a of the elastic sheet to change
while keeping the surface profiles unaltered. In the second
set of simulations, we varied qs /ql and kept qa /ql constant.
For this second set of calculations the roughness at the small-
est length scale qs was variable while the lattice constant of
the manifold stayed as a=1, as mentioned in Sec. II. It is
important to emphasize that, even though both approaches
accomplish the goal of making qa /qs variable, they are not
equivalent.

The outcome of the calculations is shown in Fig. 7. The
data points on the right-hand side of the plot �qa /qs=64�
correspond to simulations with values for the discretization
ratio qa /qs suitable to attain converged pressure histograms
P�p�. Converged pressure histograms ensure that the values
of the relative area AHertzian /Areal being reported do not
change with further increase in the mesh resolution of the
elastic sheet. Surprisingly, for a ratio of qa /qs=64, only a
fraction of �10% of the contact area can be found to belong
to the Hertzian regime. Even if the roughness of the surface
is increased up to three decades in length scales, qa /qs=2
�roughness ratio qs /ql=2048 and resolution ratio qa /ql
=4096�, the fraction in contact belonging to the Hertzian
region raises only up to �30%. Due to the lack of conver-
gence in the P�p�’s for these latter cases, the reported values
of AHertzian /Areal are expected to decrease when the resolution
of the system is increased. Hence, we can conclude that, up
to three decades in roughness, the clusters in the linear re-

gion dominate the real area of contact. Therefore, the as-
sumption of asperity models when describing the contact as
being formed by a large set of individual asperities satisfying
the Hertzian contact mechanics is violated for surfaces with
up to three decades in roughness.

Not having the possibility of achieving full convergence
for systems with three decades of roughness prevented us
from extrapolating our results to predict the value of the
fraction AHertzian /Areal for surfaces with six or more decades
in length scales. Nevertheless, after analyzing the trend
shown in Fig. 7, we anticipate a sustained increase in the
number of clusters that belong to the Hertzian region as
roughness of many more wavelengths is included within the
description of the surface profiles. After all, several of the
predictions of asperity models should resemble more the re-
sults of numerical simulations, if the self-affine surfaces un-
der study have geometries that approach more closely those
of regular engineering topographies.

IV. CONCLUSIONS

This paper has been developed with the aim of under-
standing the success of asperity models when describing the
contact mechanics of randomly rough surfaces. To achieve
such a goal, we have used Green’s function molecular dy-
namics when studying the contact between self-affine sur-
faces. With the help of GFMD, we have tackled several ques-
tions concerning the validity of the assumptions and
approximations made by asperity models.

We have shown how the contact region is formed by con-
nected clusters with shapes that are determined by the com-
petition between the discretization ratio qa /qs and the rough-
ness ratio qs /ql. In the distribution of the normal forces Lc on
the clusters, we have found the existence of two different
scaling regimes according to the value of the cluster area Ac.
Clusters with small areas satisfied a Hertzian-type law Lc
�Ac

3/2, while larger clusters displayed a linear Lc�Ac behav-
ior. The coexistence of both regimes is independent of the
relative area of contact Areal /A0 and the roughness ratio qs /ql.
Moreover, the critical area where the crossover between the
regimes takes places proved to be a function of only the
roughness at the short wavelength if the longitudinal dimen-
sion of the interface remained unchanged.

Addressing what percentage of the total area of contact
corresponded to the Hertzian clusters and what percentage to
the linear clusters composed another question we were inter-
ested in answering. The results of our simulations for self-
affine surfaces with up to three decades in length scales dem-
onstrated that the contact was dominated by the linear
clusters �Alinear /Areal�70% of the contact region�, although
the observed trend suggested a reduction in the above frac-
tion when considering fractal surfaces with roughness similar
to those of engineering systems. Therefore, the first assump-
tion of asperity models might be well motivated for ran-
domly rough surfaces with six or more orders of magnitude
in the roughness.

We also computed the probability distribution of clusters
sizes P�Ac�. In the Hertzian region, P�Ac� remained nearly
constant while within the linear regime it showed a power
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FIG. 7. �Color online� Relative percentage of contact: Contact
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law decay. Variations in the roughness exponent H of the
surfaces barely changed the plateau in P�Ac� for small cluster
areas. Conversely, simulations corresponding to higher val-
ues of the Hurst exponent displayed changes in the tails of
P�Ac�, such that the exponent of the power law shifted to
smaller numbers in absolute units. Smaller values of H
proved to limit the formation of larger clusters as expected
from the scaling theory of fractal objects. Alternatively,
changing the discretization ratio affected the behavior of
P�Ac� at small areas due to a lack of convergence in the
pressure distributions P�p�. We find that including the elas-
ticity on the flat surface and not on the rough geometry is the
main cause for the existing differences between the power
law exponent predicted by our model and the values ob-
served in the calculations of Hyun et al. �23,24,26�

Lastly, with the aim of testing the second assumption of
asperity models, we computed the height probability distri-
bution P�h� of the contacting zones. For the self-affine sur-
faces considered within this study, we found P�h� to follow a
Gaussian law. This fact corroborates the validity of asperity
theories for elastic, nonadhesive contacts. Yet the prior result
should not come as a surprise since we know that the surface
heights are always Gaussian distributed in self-affine topog-
raphies.
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